

ADVANCED and INSPECTION

DAVID BROWER

FOR DEEPWATER OIL AND GAS

ASTRO TECHNOLOGY 712 Main Street, Suite 3200 Houston, Texas 77002 281.464.0100

dbrower@astrotechnology.com

FAILURES TO MONITOR AND PREDICT

- Detect early warning signs
- Automate monitoring of critical systems
- Give critical data to key decision makers

Deepwater Horizon 2010

Thunder Horse 2005

Texas City Refinery 2005

SMALL LEAKS IN SUBSEA FIELDS

THE NEED FOR BETTER SUBSEA INSTRUMENTATION

Prevent Undesired Events from Happening

- Detect warning signs early
- Prevent potential accidents from occurring
- Improve system operations
- Automate monitoring of critical systems
- Track pressure, temperature, strain and flow
- Give critical data to key decision makers
- Eliminate production downtime
- Prevent asset damage and pipeline leaks
- Reduce safety and environmental risks

FROM AEROSPACE TO SUBSEA

Clear Gulf Study

ABOUT CLEAR GULF STUDY

Prevention of Unwanted Events, Rather than Reaction

ADVANCED INSTRUMENTATION FOR:

- Subsea fields
- Pipelines and risers
- LNG facilities

CLEAR GULF FOCUS AREAS:

- Risers and Flowlines
- Flow Assurance
- Subsea Equipment Monitoring
- Miniature Subsea Robotics

- Leak Detection
- Smart Fields (Intelli-Fields)
- **Downhole Monitoring**
- Mooring Line Monitoring

- Arctic Monitoring
- Service Life Extension

ADVANTAGES OF CLEAR GULF

Prevention of Anomalies

- Improve performance
- Reduce risk environmental and safety
- Involvement in advanced technology research for oil and gas
- NASA collaboration
- Outside research institutions involvement, i.e. multiple universities
- Industry "subject-matter experts" interface
- Participation on "Technical Steering Committee"
- Access to leading-edge technology
- Significant cost benefit pooling funding resources
- Acts as an R&D department for oil and gas companies
 - Supplements R&D efforts at large companies
 - Provides new R&D departments for smaller, independent companies
- Participate in annual meeting with U.S. Congress

FIBER-OPTIC SENSOR ROCKET MOTOR TEST

Fiber-Optic Pressure Gauge Validation

INSTRUMENTATION OF NASA'S ROBONAUT HAND

TROIKA - GULF OF MEXICO

ASTRO TECHNOLOGY pioneered the use of fiber-optic sensors on a subsea pipeline to monitor pressure, strain and vibration in external casing pipe bundle during fabrication.

BASS LITE - DEVIL'S TOWER

- Located in Atwater Valley Block 426
- Utilizes 20.3-cm (8-in) diameter flowline
- 90-km (56-mi) length
- Ties to Devil's Tower in Mississippi Canyon
- Production Up to 130 million cubic feet per day
- Water depth -2,050 m (6,750 feet)
- Commenced operation in February 2008

MONITORING:

Pressure **Temperature** Well 1 Hoop and Axial Strain 18 miles 36 miles 56 miles FLET FLMT1 FLMT2

FIBER-OPTIC SENSORS FOR DEEPWATER DRILLING **Ocean Clipper**

PREVIOUS INSTRUMENTATION ON DEEPWATER RISERS

PREVIOUS INSTRUMENTATION ON RISERS AND FLOWLINES

DEVELOPMENTS

OVERVIEW OF NEW DEVELOPMENTS

- New tensile strength measurements
- Quantified effects of wet and dry bonding
- Improved clamp design
- Methods for calibration of post-installed sensors

TENSION LEG MONITORING SYSTEM

TTMS CLAMP

SUBSEA BONDING STRENGTH ENSURED

Button Pull Testing

BONDING MAINTAINED

Four-Point Bending Test

BONDING MAINTAINED

Compression and Tension Tests

TENSILE STRENGTH MEASURED

Button Pull Testing

SUMMARY OF TENSILE STRENGTH RESULTS

SUMMARY OF TENSILE STRENGTH RESULTS

Clamp	Avg (psi)	StDev (psi)	Min (psi)	Max (psi)	Description
ВВ	292.0	108.9	113.6	498.6	Dry Bonded Control
AA	81.4	47.2	31.1	193.5	Wet Bonded Control
A	94.0	30.4	45.0	155.8	Four Point Bending (Left)
В	174.1	112.4	29.8	503.3	Four Point Bending (Left)
E	91.1	46.9	49.5	150.8	Four Point Bending (Center)
С	142.5	65.6	45.8	267.9	Four Point Bending (Right)
D	136.3	73.6	57.5	358.7	Four Point Bending (Right)
F	114.0	53.7	33.6	225.7	Tension
G	105.3	59.8	29.7	268.8	Compression

IMPROVED CLAMP DESIGN

Prototype Clamp Mold Created with 3D Printer

CALIBRATION OF POST-INSTALLED SENSORS

THERMOCLINE AT SENSOR CLAMP DEPTH

PREDICTIVE MONITORING

Foxtrot TTMS Average Load

PREDICTIVE MONITORING

Foxtrot TTMS Average Load

CLEAR GULF

A COLLABORATION BETWEEN

the Oil and Gas Industry,
NASA and Astro Technology

PROPOSED PARTNERS

- Create cutting-edge techniques for managing production
- Develop safer and more environmentally sensitive systems for drilling and production
- Respond to challenges faced when working in remote and harsh environments
- Focus on monitoring assets including platforms, risers, flowlines, subsea equipment, deepwater wells and downhole operations

